Optimization Studies on Biological Desulfurization of Sulfide Ore Using Response Surface Methodology

نویسندگان

چکیده

This research aimed to optimize the experimental conditions of biodesulfurization sulfide ore and evaluate flame-retardant effect after desulfurization under optimal conditions. Six factors were determined: particle size sample, ambient temperature, rotary speed shaking table, volume bacteria liquid, concentration leaching aid (Tween80), pH value acidizing sample. Desulfurization efficiency was used as main characterization index in optimization studies. Particle liquid inoculated selected significant by a Plackett–Burman experiment. Modeling, optimization, analysis interactive effects these factors, notably between performed using Box–Behnken design with response surface methodology. The optimum operating found be: 120 140 mesh, 175 rpm, 111 mL. Under conditions, rise 8.1% seen 5-day average efficiency. oxidation weight gain rate desulfurized 2.73%, while that control group 4.78%. results show that, optimized desulfurization, oxidizability spontaneous combustion tendency are reduced.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic Removal of Amaranth Optimization Using Response Surface Methodology

Since Amaranth (AM) is one of the dye compounds which is harmful to human’s life its removal from industrial waste water would reduce their environmental impact and health effect. Copper nanoparticle (CuNP) is a simple and eco-friendly material which can be used to remove this pollutant. In this paper, copper nanoparticles were synthesized, for removal of AM dye. The experiments were designed b...

متن کامل

Oxidative Desulfurization of Sour Gas Condensate and Optimization of Parameters with Response Surface Methodology

Reducing environmental pollution via elimination of sulfur compounds from gas condensate was the aim of this research. Whereby oxidative desulfurization from gas condensate with 3200 ppm initial sulfur was accomplished by hydrogen peroxide (30%wt) as oxidant and formic acid as catalyst. The sulfones after generation in the oxidation step were extracted through a method of liquid-liquid extracti...

متن کامل

Vanadium extraction from a magnetite ore using alkaline roasting and acid leaching processes: optimization of parameters by response surface methodology

In this work, thealkaline roasting and sulfuric acid leaching processes were employed to extract vanadium from the magnetite ore of Saghand mine in central Iran. The response surface methodology based on the central composite design model was applied to optimize the parameters involved in the processes. The studied roasting parameters were temperature (900-1100 °C), sodium carbonate percentage ...

متن کامل

Iron leaching from bauxite ore in hydrochloric acid using response surface methodology

In this work, hydrochloric acid is used to remove iron impurities in the bauxite ore contained in the diasporite mineral located in the Sari region. The bauxite ore was calcined at different temperatures and times, and then dissolved in a hydrochloric acid solution. After determining the optimum calcination conditions in 1 h at 900 °C, the response surface methodology (RSM) with four factors in...

متن کامل

Statistical Optimization of Conditions for Maximize Production of Mannan by Saccharomyces Cerevisiae Using Response Surface Methodology

In view of the increase in Saccharomyces cerevisiae mannan content, the culture condition for S.cerevisiae were optimized in this study. The influence of culture condition such as original pH, inoculum size, and temperature on mannan production were evaluated using Response surface methodology. The mathematical model was established by the quadratic rotary combination design. with the order of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Minerals

سال: 2021

ISSN: ['2075-163X']

DOI: https://doi.org/10.3390/min11060583